Genistein Disrupts Glucocorticoid Receptor Signaling in Human Uterine Endometrial Ishikawa Cells

نویسندگان

  • Shannon Whirledge
  • Linda T. Senbanjo
  • John A. Cidlowski
چکیده

BACKGROUND The link between environmental estrogen exposure and defects in the female reproductive tract is well established. The phytoestrogen genistein is able to modulate uterine estrogen receptor (ER) activity, and dietary exposure is associated with uterine pathologies. Regulation of stress and immune functions by the glucocorticoid receptor (GR) is also an integral part of maintaining reproductive tract function; disruption of GR signaling by genistein may also have a role in the adverse effects of genistein. OBJECTIVE We evaluated the transcriptional response to genistein in Ishikawa cells and investigated the effects of genistein on GR-mediated target genes. METHODS We used Ishikawa cells as a model system to identify novel targets of genistein and the synthetic glucocorticoid dexamethasone through whole genome microarray analysis. Common gene targets were defined and response patterns verified by quantitative real-time reverse-transcription polymerase chain reaction. The mechanism of transcriptional antagonism was determined for select genes. RESULTS Genistein regulated numerous genes in Ishikawa cells independently of estradiol, and the response to coadministration of genistein and dexamethasone was unique compared with the response to either estradiol or dexamethasone alone. Furthermore, genistein altered glucocorticoid regulation of GR target genes. In a select set of genes, co-regulation by dexamethasone and genistein was found to require both GR and ERα signaling, respectively. CONCLUSIONS Using Ishikawa cells, we observed that exposure to genistein resulted in distinct changes in gene expression and unique differences in the GR transcriptome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulating the GPR30 estrogen receptor with a novel tamoxifen analogue activates SF-1 and promotes endometrial cell proliferation.

Estrogens and selective estrogen receptor (ER) modulators such as tamoxifen are known to increase uterine cell proliferation. Mounting evidence suggests that estrogen signaling is mediated not only by ERalpha and ERbeta nuclear receptors, but also by GPR30 (GPER), a seven transmembrane (7TM) receptor. Here, we report that primary human endometriotic H-38 cells express high levels of GPR30 with ...

متن کامل

I-32: Implantation and Recurrent PregnancyLoss

Background: Recurrent pregnancy loss (RPL), defined as 3 or more consecutive pregnancy failures, is a common and distressing disorder. Chromosome instability in the conceptus is the most common cause whereas uterine factors are invariably invoked to explain nonchromosomal miscarriages. These uterine factors are, however, poorly defined. Materials amd Methods: Laboratory-based analysis of endome...

متن کامل

Opposite effects of histone deacetylase inhibitors on glucocorticoid and estrogen signaling in human endometrial Ishikawa cells.

Histone deacetylase inhibitors (HDACi), which have emerged as a new class of anticancer agents, act by modulating expression of genes controlling apoptosis or cell proliferation. Here, we compared the effect of HDACi on transcriptional activation by estrogen or glucocorticoid receptors (ER and GR, respectively), two members of the steroid receptor family with cell growth regulatory properties. ...

متن کامل

I-23: Reproduction and Toll Like Receptors(TLRs

Female and male reproductive tracts are of interest sites to study of immune system because they encounter specific infections such as those are sexually transmitted. Furthermore, female reproductive tract is in close contact with allogenic sperms and transmitted microorganisms during intercourse and semi allogenic fetus during pregnancy. In mammals, there are two types of immune responses, the...

متن کامل

Identification of a signaling pathway involving progesterone receptor, calcitonin, and tissue tranglutaminase in Ishikawa endometrial cells.

Previous studies indicated that calcitonin (CT), a peptide hormone involved in calcium (Ca(2+)) homeostasis, is transiently induced by steroid hormone progesterone (P) in the uterine epithelia of the rat and human within the window of implantation. Targeted disruption of uterine CT expression markedly impaired implantation in the rat. To gain insight into the molecular events underlying CT acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2015